A Comparison of ANFIS and ANN for the Prediction of Peak Ground Acceleration in Indian Himalayan Region

نویسندگان

  • Abha Mittal
  • Shaifaly Sharma
  • D. P. Kanungo
چکیده

Peak ground acceleration (PGA) plays an important role in assessing effects of earthquakes on the built environment, persons, and the natural environment. It is a basic parameter of seismic wave motion based on which earthquake resistant building design and construction are made. The level of damage is, among other factors, directly proportional to the severity of the ground acceleration, and it is important information for disaster-risk prevention and mitigation programs. In this study, a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) is proposed for predicting Peak Ground Acceleration (PGA). Artificial neural network and Fuzzy logic provide attractive ways to capture nonlinearities present in a complex system. Neuro-Fuzzy modelling, which is a newly emerging versatile area, is a judicious integration of merits of above mentioned two approaches. In ANFIS, both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic are combined in order to give enhanced prediction capabilities, as compared to using a single methodology alone. The input variables in the developed ANFIS model are the earthquake magnitude, epi-central distance, focal depth, and site conditions, and the output is the PGA values. Results of ANFIS model are compared with earlier results based on artificial neural network (ANN) model. It has been observed that ANN model performs better for PGA prediction in comparison to ANFIS model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FEASIBILITY OF PSO-ANFIS-PSO AND GA-ANFIS-GA MODELS IN PREDICTION OF PEAK GROUND ACCELERATION

In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hy...

متن کامل

PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

متن کامل

تخمین دبی اوج سیلاب و حجم رواناب رگبار با استفاده از شبکه عصبی- فازی تطبیقی (مطالعه موردی: حوزه آبخیز کسیلیان)

     Prediction of flood peak discharge and runoff volume is one of the major challenges in the management of watersheds. The present study was carried out to estimate event flood peak discharge and runoff volume using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in Kasilian watershed, Iran. For this purpose, 15 rainfall characteristics were considered for 6...

متن کامل

Prediction of Seismic Wave Intensity Generated by Bench Blasting Using Intelligence Committee Machines

In large open pit mines prediction of Peak Particle Velocity (PPV) provides useful information for safe blasting. At Sungun Copper Mine (SCM), some unstable rock slopes facing to valuable industrial facilities are both expose to high intensity daily blasting vibrations, threatening their safty. So, controlling PPV by developing accurate predictors is essential. Hence, this study proposes improv...

متن کامل

Seismic Amplification of Peak Ground Acceleration, Velocity, and Displacement by Two-Dimensional Hills

There are valuable investigations on the amplification effects of the topography on the seismic response in the frequency domain; however, a question is that how one can estimate the amplification of time domain peak ground acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD) over the topographic structures. In this study, the numerical approach has been used for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011